83 research outputs found

    A compact flexible circularly polarized implantable antenna for biotelemetry applications

    Get PDF
    With the help of in-body antennas, the wireless communication among the implantable medical devices (IMDs) and exterior monitoring equipment, the telemetry system has brought us many benefits. Thus, a very thin-profile circularly polarized (CP) in-body antenna, functioning in ISM band at 2.45 GHz, is proposed. A tapered coplanar waveguide (CPW) method is used to excite the antenna. The radiator contains a pentagonal shape with five horizontal slits inside to obtain a circular polarization behavior. A bendable Roger Duroid RT5880 material (εr = 2.2, tanδ = 0.0009) with a typical 0.25 mm-thickness is used as a substrate. The proposed antenna has a total volume of 21 × 13 × 0.25 mm3. The antenna covers up a bandwidth of 2.38 to 2.53 GHz (150 MHz) in vacuum, while in skin tissue it covers 1.56 to 2.72 GHz (1.16 GHz) and in the muscle tissue covers 2.16 to 3.17 GHz (1.01 GHz). GHz). The flexion analysis in the x and y axes was also performed in simulation as the proposed antenna works with a wider bandwidth in the skin and muscle tissue. The simulation and the curved antenna measurements turned out to be in good agreement. The impedance bandwidth of −10 dB and the axis ratio bandwidth of 3 dB (AR) are measured on the skin and imitative gel of the pig at 27.78% and 35.5%, 13.5% and 4.9%, respectively, at a frequency of 2.45 GHz. The simulations revealed that the specific absorption rate (SAR) in the skin is 0.634 and 0.914 W/kg in muscle on 1g-tissue. The recommended SAR values are below the limits set by the federal communications commission (FCC). Finally, the proposed low-profile implantable antenna has achieved very compact size, flexibility, lower SAR values, high gain, higher impedance and axis ratio bandwidths in the skin and muscle tissues of the human body. This antenna is smaller in size and a good applicant for application in medical implants

    Raman Pumping as an Energy Efficient Solution for NyWDM Flexible-grid Elastic Optical Networks

    Get PDF
    This paper investigates transparent wavelength routed optical networks using three different fiber types NZDSF, SMF and PSCF - and validates the effectiveness of Hybrid Raman/EDFA Fiber Amplification (HFA) with different pumping levels, up to the moderate 60% pumping regime. Nodes operate on the basis of flexible-grid elastic NyWDM transponders able to adapt the modulation format to the quality-of-transmission of the available lightpath, exploiting up to five 12.5 GHz spectral slots. Results consider a 37- node Pan-European network for variable Raman pumping level, span length and average traffic per node. We show that HFA in moderate pumping regime reduces the power consumption and enhances spectral efficiency for all three fiber types with particular evidence in NZDSF. In essence to that, introduction of HFA is also beneficial to avoid blocking for higher traffic loads

    Pixel frequency based railroad surface flaw detection using active infrared thermography for Structural Health Monitoring

    Get PDF
    Abstract With rapid increase in operation and development of high-speed trains, inspection of railroad surface flaws has become an important aspect for safe and reliable operation of rail network. Non-destructive testing using active infrared thermography has been useful in determining the structural health of different structures with additional benefit of robustness in overall inspection system. This study is based on detection of artificial surface flaws on an in-service railroad. Transverse and longitudinal flaws of various dimensions were machined on rough and smooth rail surface. The railroad surface was thermally stimulated to a temperature equivalent to practical conditions. Emitted radiations from rail surface were captured by an infrared camera to detect cracks. Results show a comparison between the surface flaws on rough and smooth rail surface. Subsequently, raw infrared images were post-processed by statistical image improvement to quantitatively analyse the results. Significant change in the frequency distribution of pixel intensity is observed as the flaw size and depth changes giving a clear quantification of crack topology. A comprehensive and inexpensive solution for damage diagnosis will be offered to railway authorities for Structural Health Monitoring (SHM) and NDT by the proposed framework

    Predicting Emerging Trends on Social Media by Modeling it as Temporal Bipartite Networks

    Get PDF
    The behavior of peoples' request for a post on online social media is a stochastic process that makes post's ranking highly skewed in nature. We mean peoples interest for a post can grow/decay exponentially or linearly. Considering this nature of the evolutionary peoples' interest, this paper presents a Growth-based Popularity Predictor (GPP) model for predicting and ranking the web-contents. Three different kinds of web-based real datasets namely Movielens, Facebook-wall-post and Digg are used to evaluate the performance of the proposed model. This performance is measured based on four information-retrieval metrics Area Under receiving operating Characteristic (AUC), Novelty, Precision, and Kendal's Tau. The obtained results show that the prediction performance can be further improved if the score is mapped onto a cumulative predicted item's ranking.https://doi.org/10.1109/ACCESS.2020.297613

    Compact broadband antenna with Vicsek fractal slots for WLAN and WiMAX applications

    Get PDF
    This article belongs to the Special Issue Photonic Technologies and Systems Enabling 6G.This paper aims to design a compact broadband antenna for wireless local area network (WLAN) and worldwide interoperability for microwave access (WIMAX) applications. The suggested antenna consists of an octagonal radiator with Vicsek fractal slots and a partial ground plane, it is printed on FR-4 dielectric substrate, and its global dimension is 50 × 50 × 1.6 mm3. The antenna is designed and constructed using both CST MICROWAVE STUDIO® and CADFEKO electromagnetic solver, and in order to validate the acquired simulation results, the antenna is manufactured and tested using vector network analyzer E5071C. The measurement results show that the designed antenna attains a broadband bandwidth (S11 < −10 dB) from 2.48 to 6.7 GHz resonating at 3.6 and 5.3 GHz, respectively. The broadband bandwidth covers the two required bands: WiMAX at the frequencies 2.3/2.5/3.3/3.5/5/5.5 GHz and WLAN at the frequencies 3.6/2.4–2.5/4.9–5.9 GHz. In addition, the suggested antenna provides good gains of 2.78 dBi and 5.32 dBi, omnidirectional measured radiation patterns in the E-plane and the H-plane and high efficiencies of 88.5% and 84.6% at the resonant frequencies. A close agreement of about 90% between simulation and measurement results is noticed.The authors appreciate the funding from Universidad Carlos III de Madrid and the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Grant 801538. In addition the partial support from the Researchers Supporting Project number (RSP-2021/58), King Saud University, Riyadh, Saudi Arabia, is acknowledged

    Partial Observer Decision Process Model for Crane-Robot Action

    Get PDF
    The most common use of robots is to effectively decrease the human’s effort with desirable output. In the human-robot interaction, it is essential for both parties to predict subsequent actions based on their present actions so as to well complete the cooperative work. A lot of effort has been devoted in order to attain cooperative work between human and robot precisely. In case of decision making , it is observed from the previous studies that short-term or midterm forecasting have long time horizon to adjust and react. To address this problem, we suggested a new vision-based interaction model. The suggested model reduces the error amplification problem by applying the prior inputs through their features, which are repossessed by a deep belief network (DBN) though Boltzmann machine (BM) mechanism. Additionally, we present a mechanism to decide the possible outcome (accept or reject). The said mechanism evaluates the model on several datasets. Hence, the systems would be able to capture the related information using the motion of the objects. And it updates this information for verification, tracking, acquisition, and extractions of images in order to adapt the situation. Furthermore, we have suggested an intelligent purifier filter (IPF) and learning algorithm based on vision theories in order to make the proposed approach stronger. Experiments show the higher performance of the proposed model compared to the state-of-the-art methods.https://doi.org/10.1155/2020/634934

    A Recent Approach towards Fluidic Microstrip Devices and Gas Sensors: A Review

    Get PDF
    This paper aims to review some of the available tunable devices with emphasis on the techniques employed, fabrications, merits, and demerits of each technique. In the era of fluidic microstrip communication devices, versatility and stability have become key features of microfluidic devices. These fluidic devices allow advanced fabrication techniques such as 3D printing, spraying, or injecting the conductive fluid on the flexible/rigid substrate. Fluidic techniques are used either in the form of loading components, switching, or as the radiating/conducting path of a microwave component such as liquid metals. The major benefits and drawbacks of each technology are also emphasized. In this review, there is a brief discussion of the most widely used microfluidic materials, their novel fabrication/patterning methods

    Implementation of a miniaturized planar tri-band microstrip patch antenna for wireless sensors in mobile applications

    Get PDF
    This article belongs to the Special Issue Applications of Antenna Technology in Sensors.Antennas in wireless sensor networks (WSNs) are characterized by the enhanced capacity of the network, longer range of transmission, better spatial reuse, and lower interference. In this paper, we propose a planar patch antenna for mobile communication applications operating at 1.8, 3.5, and 5.4 GHz. A planar microstrip patch antenna (MPA) consists of two F-shaped resonators that enable operations at 1.8 and 3.5 GHz while operation at 5.4 GHz is achieved when the patch is truncated from the middle. The proposed planar patch is printed on a low-cost FR-4 substrate that is 1.6 mm in thickness. The equivalent circuit model is also designed to validate the reflection coefficient of the proposed antenna with the S11 obtained from the circuit model. It contains three RLC (resistor–inductor–capacitor) circuits for generating three frequency bands for the proposed antenna. Thereby, we obtained a good agreement between simulation and measurement results. The proposed antenna has an elliptically shaped radiation pattern at 1.8 and 3.5 GHz, while the broadside directional pattern is obtained at the 5.4 GHz frequency band. At 1.8, 3.5, and 5.4 GHz, the simulated peak realized gains of 2.34, 5.2, and 1.42 dB are obtained and compared to the experimental peak realized gains of 2.22, 5.18, and 1.38 dB at same frequencies. The results indicate that the proposed planar patch antenna can be utilized for mobile applications such as digital communication systems (DCS), worldwide interoperability for microwave access (WiMAX), and wireless local area networks (WLAN).The authors appreciate the financial support from Universidad Carlos III de Madridand and the European Union's Horizon 2020 research and innovation program under Marie Sklodowska-Curie Grant 801538

    A Wideband Bear-Shaped Compact Size Implantable Antenna for In-Body Communications

    Get PDF
    Biomedical implantable antennas play a vital role in medical telemetry applications. These types of biomedical implantable devices are very helpful in improving and monitoring patients' living situations on a daily basis. In the present paper, a miniaturized footprint, thin-profile bear-shaped in-body antenna operational at 915 MHz in the industrial, scientific, and medical (ISM) band is proposed. The design is a straightforward bear-shaped truncated patch excited by a 50-W coaxial probe. The radiator is made up of two circular slots and one rectangular slot at the feet of the patch, and the ground plane is sotted to achieve a broadsided directional radiation pattern, imprinted on a Duroid RT5880 roger substrate with a typical 0.254-mm thickness ( er = 2.2, tan d = 0.0009). The stated antenna has a complete size of 7 mm x 7 mm x 0.254 mm and, in terms of guided wavelength, of 0.027lg x 0.027lg x 0.0011lg. When operating inside skin tissues, the antenna covers a measured bandwidth from 0.86 GHz to 1.08 GHz (220 MHz). The simulations and experimental outcomes of the stated design are in proper contract. The obtained results show that the calculated specific absorption rate (SAR) values inside skin of over 1 g of mass tissue is 8.22 W/kg. The stated SAR values are lower than the limitations of the federal communications commission (FCC). Thus, the proposed miniaturized antenna is an ultimate applicant for in-body communications.This project received funding from Universidad Carlos III de Madrid and the European Union’s Horizon 2020 research and innovation program, under the Marie Sklodowska-Curie Grant 801538. It also received partial funding from the Researchers Supporting Project number (RSP- 2021/399), King Saud University, Riyadh, Saudi Arabia
    • …
    corecore